

Fig. 3. Molecular packing.
mum and maximum peaks in the final ΔF map were -0.23 and $0.17 \mathrm{e} \AA^{-3}$, respectively, and the maximum $|\Delta / \sigma|$ was 0.024 . The scattering factors for the non-H atoms were taken from Cromer \& Mann (1968), with the anomalous-dispersion corrections taken from the work of Cromer \& Liberman (1970). The scattering factors for the H atoms were obtained from Stewart, Davidson \& Simpson (1965). Values used to calculate the linear absorption coefficient are from International Tables for X-ray Crystallography (1974). Figures generated using SHELXTL-Plus (Sheldrick, 1987). Positional and equivalent isotropic thermal parameters for the non- H atoms are listed in Table 1, while the bond lengths and angles for the non-H atoms are listed in Table 2.* The drawings of

[^0]molecules (A) and (B) with the atom-labeling schemes are shown in Figs. 1 and 2, respectively, and the packing diagram is in Fig. 3.

Related literature. The aminobiphenyl substituted with the chiral tricyclic amine (Whitesell, Minton \& Chen, 1988) was prepared as a chiral analog of biphenyl as a possible candidate for non-linear optical, second harmonic generation (Chemla \& Zyss, 1987). Single-crystal X-ray analysis was undertaken to investigate the influence of the C_{2} symmetric amine subunit on crystal packing.

Acknowledgement is made to the Donors of the Petroleum Research Fund, administered by the American Chemical Society, for partial support of this research (Grant ACS-PRF AC-20714 to JKW) and to the Robert A. Welch Foundation (Grant F-626 to JKW and F-233 to RED).

References

Chemla, D. S. \& Zyss, J. (1987). Editors. Nonlinear Optical Properties of Organic Molecules and Crystals, Vols. 1 and 2. New York: Academic Press.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891~1898.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324. International Tables for X-ray Crystallography (1974). Vol. IV, p. 55. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick G. M. (1987). SHELXTL-Plus. Nicolet XRD, Madison, Wisconsir, USA.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Whitesell, J. K., Minton, M. \& Chen, K.-M. (1988). J. Org. Chem. 53, 5383-5384.

Acta Cryst. (1990). C46, 1556-1558

Structure of the Complex of Imidazole and Picric Acid*

By M. Soriano-Garciá, \dagger M. Schatz-Levine, R. A. Toscano and R. Villena Iribe
Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán 04510, Mexico DF

(Received 30 November 1989; accepted 10 January 1990)

[^1]Table 1. Fractional atomic coordinates and equivalent isotropic temperature factors

	$U_{\text {eq }}=\left(U_{\mathrm{II}} U_{22} U_{33}\right)^{1 / 3}$			
	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
	x	y	z.	$0.055(1)$
$\mathrm{N}(1)$	$0.0228(3)$	$0.7894(3)$	$0.2932(2)$	$0.060(1)$
$\mathrm{C}(2)$	$0.0502(4)$	$0.8439(3)$	$0.2412(2)$	$0.065(1)$
$\mathrm{N}(3)$	$0.1350(4)$	$0.7912(3)$	$0.2011(2)$	$0.070(2)$
$\mathrm{C}(4)$	$0.1632(5)$	$0.7021(4)$	$0.2290(2)$	$0.065(2)$
$\mathrm{C}(5)$	$0.0920(4)$	$0.7008(3)$	$0.2867(2)$	$0.036(1)$
$\mathrm{C}(6)$	$0.1594(3)$	$0.3994(2)$	$0.0530(2)$	$0.049(1)$
$\mathrm{O}(1)$	$0.1531(3)$	$0.3712(2)$	$0.1122(1)$	$0.040(1)$
$\mathrm{C}(7)$	$0.0849(4)$	$0.3532(2)$	$-0.0021(2)$	$0.047(1)$
$\mathrm{C}(8)$	$0.0998(4)$	$0.3825(3)$	$-0.0666(2)$	$0.048(1)$
$\mathrm{C}(9)$	$0.1855(4)$	$0.4650(3)$	$-0.0808(2)$	$0.045(1)$
$\mathrm{C}(10)$	$0.2565(4)$	$0.5183(3)$	$-0.0311(2)$	$0.040(1)$
$\mathrm{C}(11)$	$0.2430(4)$	$0.4848(3)$	$0.0326(2)$	$0.053(1)$
$\mathrm{N}(4)$	$-0.0129(3)$	$0.2682(2)$	$0.0097(1)$	0.0
$\mathrm{O}(2)$	$-0.0833(3)$	$0.2649(2)$	$0.0618(1)$	$0.071(1)$
$\mathrm{O}(3)$	$-0.0230(3)$	$0.2047(2)$	$-0.0339(2)$	$0.077(1)$
$\mathrm{N}(5)$	$0.1988(4)$	$0.4976(3)$	$-0.1492(2)$	$0.067(1)$
$\mathrm{O}(4)$	$0.2835(3)$	$0.5661(3)$	$-0.1614(1)$	$0.092(1)$
$\mathrm{O}(5)$	$0.1238(4)$	$0.4549(3)$	$-0.1913(1)$	$0.095(1)$
$\mathrm{N}(6)$	$0.3162(4)$	$0.5426(3)$	$0.0844(2)$	$0.054(1)$
$\mathrm{O}(6)$	$0.2970(4)$	$0.6329(2)$	$0.0833(2)$	$0.082(1)$
$\mathrm{O}(7)$	$0.3887(4)$	$0.5015(2)$	$0.1265(2)$	$0.092(1)$

Table 2. Bond lengths (\AA) and valence angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{N}(1)-\mathrm{C}(2)$	1.305 (5)	$\mathrm{N}(1)-\mathrm{C}(5)$	1.353 (6)
$\mathrm{C}(2)-\mathrm{N}(3)$	1.318 (6)	$\mathrm{N}(3)-\mathrm{C}(4)$	$1 \cdot 351$ (6)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.327 (6)	$\mathrm{C}(6)-\mathrm{O}(1)$	1.258 (4)
$\mathrm{C}(6)-\mathrm{C}(7)$	1.438 (5)	$\mathrm{C}(6)-\mathrm{C}(11)$	1.433 (4)
$\mathrm{C}(7)-\mathrm{C}(8)$	1.368 (5)	$\mathrm{C}(7)-\mathrm{N}(4)$	1.462 (4)
$\mathrm{C}(8)-\mathrm{C}(9)$	1.383 (5)	$\mathrm{C}(9)-\mathrm{C}(10)$	$1 \cdot 390$ (5)
$\mathrm{C}(9)-\mathrm{N}(5)$	$1 \cdot 454$ (5)	$\mathrm{C}(10)-\mathrm{C}(11)$	1.370 (5)
$\mathrm{C}(11)-\mathrm{N}(6)$	1.460 (5)	$\mathrm{N}(4)-\mathrm{O}(2)$	$1 \cdot 227$ (4)
$\mathrm{N}(4)-\mathrm{O}(3)$	1.231 (4)	$\mathrm{N}(5)-\mathrm{O}(4)$	$1 \cdot 220$ (5)
$\mathrm{N}(5)-\mathrm{O}(5)$	$1 \cdot 226$ (5)	$\mathrm{N}(6)-\mathrm{O}(6)$	1.231 (4)
$\mathrm{N}(6)-\mathrm{O}(7)$	$1 \cdot 204$ (5)		
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(5)$	109.4 (3)	$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{N}(3)$	107.4 (4)
$\mathrm{C}(2)-\mathrm{N}(3)-\mathrm{C}(4)$	$109 \cdot 3$ (4)	$\mathrm{N}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	106.8(4)
$\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	107.1 (4)	$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{C}(7)$	125.7 (3)
$\mathrm{O}(1)-\mathrm{C}(6)-\mathrm{C}(11)$	$122 \cdot 6$ (3)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)$	111.7 (3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	124.5 (3)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{N}(4)$	119.5 (3)
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{N}(4)$	116.0 (3)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	119.0 (3)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	121.3 (3)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{N}(5)$	119.1 (3)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{N}(5)$	119.5 (3)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$	117.9 (3)
$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$	$125 \cdot 5$ (3)	$\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{N}(6)$	117.3 (3)
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(6)$	117.2 (3)	$\mathrm{C}(7)-\mathrm{N}(4)-\mathrm{O}(2)$	118.3 (3)
$\mathrm{C}(7)-\mathrm{N}(4)-\mathrm{O}(3)$	118.3 (3)	$\mathrm{O}(2)-\mathrm{N}(4)-\mathrm{O}(3)$	123.4 (3)
$\mathrm{C}(9)-\mathrm{N}(5)-\mathrm{O}(4)$	118.1 (3)	$\mathrm{C}(9)-\mathrm{N}(5)-\mathrm{O}(5)$	118.1 (4)
$\mathrm{O}(4)-\mathrm{N}(5)-\mathrm{O}(5)$	123.8 (4)	$\mathrm{C}(11)-\mathrm{N}(6)-\mathrm{O}(6)$	117.0 (3)
$\mathrm{C}(11)-\mathrm{N}(6)-\mathrm{O}(7)$	120.0 (3)	$\mathrm{O}(6)-\mathrm{N}(6)-\mathrm{O}(7)$	123.0 (3)

with respect to the parent molecule [Craven, McMullan, Bell, \& Freeman (1977). Acta Cryst. B33, 2585-2589]. The six-membered ring is not exactly planar $\left(x^{2}=7.8\right)$ with a maximum deviation of -0.024 (2) \AA at $C(7)$. The nitro groups are twisted out of the plane of the six-membered ring by varying amounts: the ortho nitro groups $\mathrm{O}(2)-\mathrm{N}(4)-\mathrm{O}(3)$ and $\mathrm{O}(6)-\mathrm{N}(6)-\mathrm{O}(7)$ are twisted by 148.0 (1) and $48.0(1)^{\circ}$, respectively, while the para nitro group is twisted by $5 \cdot 4(1)^{\circ}$. The crystal
structure is stabilized by two intermolecular hydrogen bonds: $\mathrm{N}(1)-\mathrm{H} \cdots \mathrm{O}(1) \quad(-x, 0 \cdot 5+y, 0 \cdot 5-z)$ 2.710 (4), $\quad \mathrm{N}(3)-\mathrm{H} \cdots \mathrm{O}(1) \quad(0 \cdot 5-x, 0 \cdot 5+y, z)$ 2.825 (5) \AA and eleven intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions < $3 \cdot 42 \AA$.

Experimental. The title compound was prepared by mixing imidazole and picric acid in equimolecular amounts in hot chloroform, followed by slow evaporation of the resulting solution and this gave yellow crystals. Size of crystal $0.22 \times 0.30 \times$ 0.34 mm . Nicolet $R 3$ four-circle diffractometer, graphite-monochromated Mo $K \alpha$ radiation. Lattice parameters from 25 machine-centred reflections with $4.0<2 \theta<16.2^{\circ} .2489$ reflections with $3<2 \theta<50^{\circ}$ for one octant, 1369 independent with $I>3 \cdot 0 \sigma(I)$, index range $h 0 \rightarrow 9, k 0 \rightarrow 14, \quad l 0 \rightarrow 21,2 \theta / \theta$-scan mode, variable scan speed. Two standard reflections (220,230) monitored every 50 measurements; no significant variation. Lp correction. Data adjusted to an approximately absolute scale and an overall U value of $0.046 \AA^{2}$, absorption ignored and $R=0.052$. Structure solved by direct methods and partial structure expansion by an iterative E-Fourier procedure using SHELXTL5 (Sheldrick, 1985). Least-squares refinement of all non-H atoms anisotropic; H atoms of CH were allowed to ride on bonded C with a fixed isotropic $U=0.06 \AA^{2}$. The H atoms bonded to N atoms were located on a difference Fourier map at an advanced stage of anisotropic refinement and their coordinates refined. $\sum w(\Delta F)^{2}$ minimized, $w=$ $\left[\sigma^{2}\left(F_{o}\right)+0.001\left(F_{o}\right)^{2}\right]^{-1}$, where σ is standard deviation of observed amplitudes, based on counting statistics. In the last cycle $(\Delta / \sigma)_{\max }=0.011 ; \Delta \rho$ from -0.21 to $0.22 \mathrm{e} \AA^{-3}, S=1.21$; final $R=0.061, w R=0.063$; scattering factors from International Tables for X-ray Crystallography (1974). All computations performed on a Nova 4 S computer and plots drawn on Tektronix plotter with the SHELXTL system of programs.

Fig. 1. The molecular structure of the title compound with the atomic numbering scheme.

Atomic coordinates are in Table 1.* A perspective molecular drawing and the atomic labelling scheme are displayed in Fig. 1. Bond distances and angles are listed in Table 2.

Related literature. The title compound was prepared in connection with our studies on the protonation sites of organic bases with several nitrogen functions (Soriano-Garcia, Toscano \& Espinosa, 1985; Soriano-García, Toscano \& Schatz-Levine, 1987).

* Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52594 (12 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

We thank Mrs Cynthia E Lesh de S. and Mr Abelardo Cuellar M. for technical assistance.

References

Craven, B. M., McMullan, R. K., Bell, J. D. \& Freeman, H. C. (1977). Acta Cryst. B33, 2585-2589.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Sheldrick, G. M. (1985). SHELXTL5. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Univ. of Göttingen, Federal Republic of Germany.
Soriano-García, M., Toscano, R. A. \& Espinosa, G. (1985). J. Crystallogr. Spectrosc. Res. 15, 651-662.
Soriano-García, M., Toscano, R. A. \& Schatz-Levine, M. (1987). J. Crystallogr. Spectrosc. Res. 17, 207-219.

Acta Cryst. (1990). C46, 1558-1560

Structure of Ethyl 2-Acetyl-3-[5-(p-tolyl)-2-furyl]acrylate

By Ján Lokaj and Viktor Vrábel
Central Laboratory of Chemical Technics, Slovak Technical University, Faculty of Chemical Technology, Radlinského 9, CS-81237 Bratislava, Czechoslovakia

Peter Sivý
AGRIS š.p., Trenčianska 55, CS-82457 Bratislava, Czechoslovakia
DUŠan ILAvskỳ
Department of Organic Chemistry, Faculty of Chemical Technology, Radlinského 9, CS-81227 Bratislava, Czechoslovakia
and Jirí Ječný
Department of Macromolecular Chemistry, Czechoslovak Academy of Sciences, Heyrovského nám. 2, CS-62001 Praha 6, Czechoslovakia
(Received 6 November 1989; accepted 16 February 1990)

Abstract

C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}, M_{r}=298 \cdot 3\), orthorhombic, Pbca , $a=7.519$ (1),$b=21.926$ (6), $c=19.134$ (4) $\AA, \quad V=$ $3154.5 \AA^{3}, \quad Z=8, \quad D_{m}=1 \cdot 24, \quad D_{x}=1.256 \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda(\mathrm{Cu} K \alpha)=1.54178 \AA, \quad \mu=0.68 \mathrm{~mm}^{-1}, \quad F(000)=$ 1264, $T=293 \mathrm{~K}$, final $R=0.052$ for 1890 unique observed reflections. There is extensive π delocalization involving the phenyl, furyl and acetylethylenic groups as shown by the pattern of bond lengths and the planarity of the system (the phenyl/ furyl and acetylethylenic group/furyl dihedral angles are 1.3 and 1.0°, respectively) while the ethoxycarbonyl moiety is nearly perpendicular to the conjugated system (dihedral angle 91.5°). The molecules are held together by van der Waals forces only.

Experimental. Transparent prism-like crystal of dimensions $0.1 \times 0.15 \times 0.75 \mathrm{~mm} ; D_{m}$ by flotation in bromoform $/ n$-octane; systematic absences: 0 kl for k odd, $h 0 l$ for l odd and $h k 0$ for h odd; Syntex $P 2_{1}$ diffractometer, graphite-monochromated $\mathrm{CuK} \alpha$ radiation; room temperature; choice of unit-cell parameters verified by $U B$ (Sivý, Sivý \& Koren̆, 1987), refinement on the basis of 15 reflections, $10<$ $\theta<25^{\circ}$; intensity data ($h=0$ to $8, k=0$ to $25, l=0$ to 22) by $\theta / 2 \theta$ scans, $2 \theta \leq 130^{\circ}$; three standards measured every 100 reflections, no significant systematic fluctuation; 2682 unique reflections, 1890 with $I \geq 2 \sigma(I)$ considered observed and included in the refinement; data reduction using XP21 (Pavelčík,

[^0]: * Tables of anisotropic thermal parameters, H-atom positional parameters, bond lengths and angles involving H atoms, torsion angles and structure-factor amplitudes have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52708 (31 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^1]: Abstract. $\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}^{-} . \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2}^{+}, \quad M_{r}=297 \cdot 2$, orthorhombic, $P b c a, a=8.944$ (2),$b=13.496$ (5), $c=$ $20 \cdot 195(7) \AA, \quad V=2438(1) \AA^{3}, \quad Z=8, \quad D_{x}=$

 * Contribution No. 999 of the Instituto de Química, UNAM.
 \dagger To whom correspondence should be addressed.

